基本信息
宋凡  男  博导  中国科学院力学研究所
电子邮件: songf@lnm.imech.ac.cn
通信地址: 科学园南里601-1407
邮政编码: 100190

研究领域

生物力学

  • 细胞-分子生物力学

    1. Laplace压力对细胞分裂的影响

    2. 膜张力对细胞死亡的影响

    3. 波动熵力对蛋白质相互作用的影响

  • 眼生物力学

  • 代表性成果

    • Coordination Chemistry Reviews, 2022

    • Cell Death & Differentiation, 2018, 2022

    • Nature Communications, 2020

    • National Science Review, 2020

    • Nano Letters, 2020

    • iScience, 2021

    • Soft Matter, 2021(a)、(b), 2019, 2017

    • Journal of Molecular Biology, 2023

    • Acta Biomaterialia, 2017

仿生材料力学

  • 仿生增韧与防热

      

  • 仿生智能液体输运

    1. 电场响应微结构表面液滴操控

    2. 拉伸响应固液复合微纳结构表面液滴驱除

    3. 弯曲控制微纳结构表面液体输运方向

  • 代表性成果

    • Advanced Materials, 2017

    • Advanced Science, 2020

    • ACS Nano, 2021, 2022, 2023

    • Journal of Materials Chemistry A, 2020

    • Advanced Functional Materials, 2018

    • ACS Applied Materials & Interfaces, 2017

    • Materials Horizon, 2022

    • Physical Review Letters, 2008, 2010

    • Biomaterials, 2003

材料热力损伤

  • 陶瓷材料的热震裂纹实时观测

      

  • 裂纹扩展速度对陶瓷动态应力强度因子的影响

        

  • 材料参数对陶瓷热震裂纹扩展的影响

      

  • 非透明陶瓷材料的热震裂纹实时观测

      

  • 代表性成果
    • Y. F. Shao, et al, Ceram. Int., 2021, 47: 30974-30979

    • Y. F. Shao, et al, Ceram. Int., 2021, 47: 3643-3648

    • Y. F. Shao, et al, J. Am. Ceram. Soc., 2022, 105: 7649-7657

    • Y. F. Shao, et al, Carbon, 2022, 200: 281-295

    • Y. F. Shao, et al, Eng. Fract. Mech., 2022, 263: 108285

    • Y. F. Shao, et al, J. Eur. Ceram. Soc., 2023, 43: 2039-2044

招生信息

招生方向

1)细胞生物力学;

2)仿生和生物系统的基本原理;

3)软物质(生命物质、各种聚合物及其溶液等)结构和性能;

4)超高温材料结构与性能。

招收具有力学/生物/物理背景的研究生

欢迎国内外优秀博士生联系博士后、特别研究助理合作研究事宜。

招生专业

080102-固体力学

083100-生物医学工程

071011-生物物理


教育及工作经历

2005,12-今,    中国科学院力学研究所,非线性力学国家重点实验室(LNM),研究员;

2003,11-2004,12, 法国科学院应用数学和力学研究所(LEMTA-CNRS-France,访问学者;  

2002,09-2003,10, 香港大学机械工程系,访问学者;

1999,12-2005,11, 中国科学院力学研究所,非线性力学国家重点实验室(LNM),副研究员;

1997,10-1999,11, 中国科学院力学研究所,非线性力学国家重点实验室(LNM),博士后,合作导师:白以龙;

1994,04-1997,9,  哈尔滨工业大学,工程力学系,博士。

社会兼职

中国力学学会生物力学专业委员会委员;

固体力学专业委员会生物材料及仿生专业组组长;

北京生物医学工程学会生物力学专业委员会委员。

曾任中国科学院力学研究所非线性力学国家重点实验室(LNM)副主任。

出版信息

   
发表论文

[1]    Li L., Wang X., Wu, H., Shao, Y. and Song F.*, Interplay between receptor-ligand binding and lipid domain formation depends on the mobility of ligands in cell-substrate adhesion. Frontiers in Molecular Biosciences,2021, 8: 655662.

[2]     Li L., Hu J., Rozycki B., Wang X., Wu, HL and Song F.*, Influence of lipid rafts on pattern formation during T-cell adhesion. New Journal of Physics, 2021,23:043052.

[3]    Li L., Hu J., X Shi., Rozycki B. and Song F.*, Interplay between cooperativity of intercellular receptor–ligand binding and coalescence of nanoscale lipid clusters in adhering membranes. Soft Matter, 2021, 17:1912-1920.

[4]     Li Y., Liu B.,Wang X.,Shao Y.,Li L.,Wei J. and Song F.* The effect of a prefabricated crack on the crack growth in ceramics during quenching. Ceramics International, 2021, 47:3643-3648.

[5]   Wei J., Liu Y. and Song F., Coarse-grained simulation of the translational and rotational diffusion of globular proteins by dissipative particle dynamics. Journal of Chemical Physics, 2020, 153: 234902.

[6]     Li L. and Song F.*, Biomechanical research into lamina cribrosa in glaucoma. National Science Review, 2020, 7: 1277–1279.

[7]     Li W., Li J. and Song F.*, Biot number effect and non-Fourier effect on temperature field and stress intensity factor of a cracked strip under thermal shock loading. Engineering Fracture Mechanics, 2020, 228: 106923.

[8]    Li L., Hu J., Rozycki B. and Song F.*, Intercellular Receptor-Ligand Binding and Thermal Fluctuations Facilitate Receptor Aggregation in Adhering Membranes. Nano Letters, 2020, 20: 722-728.

[9]   Li L., Hu J., Li L. and Song F.*, Binding constant of membrane-anchored receptors and ligands that induce membrane curvatures. Soft Matter, 2019, 15: 3507-3514.

[10]  Wei J., Zhang X., Song F. and Shao Y., Nanobubbles in confined solution: Generation, contact angle, and stability. Journal of Chemical Physics, 2018, 148: 064704.

[11]   Shao Y., Liu B., Wang X., Li L., Wei J. and Song F., Crack propagation speed in ceramic during quenching. Journal of the European Ceramic Society, 2018, 38: 2879-2885.

[12]   Li L., Wang X., Shao Y., Li W. and Song F.*, Entropic pressure between fluctuating membranes in multilayer systems. Science China-Physics Mechanics & Astronomy, 2018, 61: 128711.

[13]    Li L., Hu J., Xu G. and Song F.*, Binding constant of cell adhesion receptors and substrate-immobilized ligands depends on the distribution of ligands. Physical Review E, 2018, 97: 012405.

[14]    Yan P., Dong J.S., Chen F.L. and Song F., Unified complex variable solution for the effective transport properties of composites with a doubly-periodic array of fibers. Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2017, 97: 397-413.

[15]   Wei J. and Song F.*, Extended law of corresponding states for percolation threshold of short-range attractive spheres. Science China-Physics Mechanics & Astronomy, 2017, 60: 014621.

[16]   Wei J. and Song F.*, Association equilibria for proteins interacted with crowders of short-range attraction in crowded environment. International Journal of Modern Physics B, 2017, 31: 1750007.

[17]      Wang J., Shen Y., Song F., Ke F., Liao X. and Lu C., On the wurtzite to tetragonal phase transformation in ZnO nanowires. Nanotechnology, 2017, 28: 165705.

[18]  Tian H., Li L. and Song F.*, Study on the deformations of the lamina cribrosa during glaucoma. Acta Biomaterialia, 2017, 55: 340-348.

[19]      Shao Y., Song F., Liu B., Li W., Li L. and Jiang C., Observation of ceramic cracking during quenching. Journal of the American Ceramic Society, 2017, 100: 520-523.

[20]      Li L., Xu G.-K. and Song F.*, Impact of lipid rafts on the T-cell-receptor and peptide-major-histocompatibility-complex interactions under different measurement conditions. Physical Review E, 2017, 95: 012403.

[21]     Li L., Hu J., Shi X., Shao Y. and Song F.*, Lipid rafts enhance the binding constant of membrane-anchored receptors and ligands. Soft Matter, 2017, 13: 4294-4304.

[22]     Du R., Tian H., Xu X., Shao Y. and Song F.*, Depth-dependent mechanical characteristics of porcine cornea. Soft Materials, 2017, 15: 27-33.

[23]    Chai H., Jiang C., Song F.* and Yan P., The coupling interaction of a piezoelectric screw dislocation with a bimaterial containing a circular inclusion. Mathematics and Mechanics of Solids, 2017, 22: 538-556.

[24]    Wu H., Li L., Chai G., Song F. and Kitamura T., Three-dimensional thermal weight function method for the interface crack problems in bimaterial structures under a transient thermal loading. Journal of Thermal Stresses, 2016, 39: 371-385.

[25]    Wei J., Zhang X. and Song F.*, Deformation of surface nanobubbles induced by substrate hydrophobicity. Langmuir, 2016, 32: 13003-13008.

[26]      Wei J., Song F. and Dobnikar J., Assembly of superparamagnetic filaments in external field. Langmuir, 2016, 32: 9321-9328.

[27]      Wei J., Dobnikar J., Curk T. and Song F.*, The effect of attractive interactions and macromolecular crowding on crystallins association. Plos One, 2016, 11: e0151159.

[28] Wang J., Shen Y., Song F., Ke F., Bai Y. and Lu C., Effects of oxygen vacancies on polarization stability of barium titanate. Science China-Physics Mechanics & Astronomy, 2016, 59: 634602.

[29]   Shao Y.F., Song F.*, Jiang C.P., Xu X.H., Wei J.C. and Zhou Z.L., Effect of temperature-dependent surface heat transfer coefficient on the maximum surface stress in ceramics during quenching. Philosophical Magazine, 2016, 96: 387-398.

[30]   Li W., Song F.*, Li J., Abdelmoula R. and Jiang C., Non-Fourier effect and inertia effect analysis of a strip with an induced crack under thermal shock loading. Engineering Fracture Mechanics, 2016, 162: 309-323.

[31]   Li W., Li J., Abdelmoula R., Song F. and Jiang C.-P., Inertia effect analysis of a half-plane with an induced crack under thermal loading using hyperbolic heat conduction. ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik, 2016, 96: 939-955.

[32]   Li L. and Song F.*, Entropic force between biomembranes. Acta Mechanica Sinica, 2016, 32: 970-975.

[33]   Tian H., Du R., Song F.*, A modified relation between the intraocular and intracranial pressures. Theoretical and Applied Mechanics Letters, 2016, 6: 148-150.

[34]   Wu X., Jiang C., Song F.*, Li J., Shao Y., Xu X. and Yan P., Size effect of thermal shock crack patterns in ceramics and numerical predictions. Journal of the European Ceramic Society, 2015, 35: 1263-1271.

[35]   Wei J., Xu L. and Song F., Range effect on percolation threshold and structural properties for short-range attractive spheres. Journal of Chemical Physics, 2015, 142: 034504.

[36] Wang J., Shen Y.G., Song F., Ke F.J., Bai Y.L. and Lu C., Materials can be strengthened by nanoscale stacking faults. Europhysics Letters, 2015, 110: 36002.

[37]   Wang J., Shen Y.G., Song F., Ke F.J., Bai Y.L. and Lu C., Size-dependent brittle-to-ductile transition in GaAs nano-rods. Engineering Fracture Mechanics, 2015, 150: 135-142.

[38]   Liu Y., Wu X., Guo Q., Jiang C., Song F.* and Li J., Experiments and numerical simulations of thermal shock crack patterns in thin circular ceramic specimens. Ceramics International, 2015, 41: 1107-1114.

[39]   Li J., Song F. and Jiang C., A non-local approach to crack process modeling in ceramic materials subjected to thermal shock. Engineering Fracture Mechanics, 2015, 133: 85-98.

[40]   Chai H., Jiang C., Song F.*, Li J. and Yan P., The coupling interaction of a screw dislocation with a bimaterial interface and a nearby circular inclusion. Archive of Applied Mechanics, 2015, 85: 1733-1742.

[41]   Yang L., Zhang L., Song F. and Gao Y., General solutions for three-dimensional thermoelasticity of two-dimensional hexagonal quasicrystals and an application. Journal of Thermal Stresses, 2014, 37: 363-379.

[42]   Xu X., Tian C., Sheng S., Lin Z. and Song F., Characterization of thermal-shock cracks in ceramic bars. Science China-Physics Mechanics & Astronomy, 2014, 57: 2205-2208.

[43]   Xu H., Zheng Q., Shao Y., Song F., Zhang L., Wang Q. and Huang D., The effects of ageing on the biomechanical properties of root dentine and fracture. Journal of Dentistry, 2014, 42: 305-311.

[44]   Shao Y.F., Liu Q.N., Tian H.J., Lin Z.K., Xu X.H. and Song F.*, Dimension limit for thermal shock failure. Philosophical Magazine, 2014, 94: 2647-2655.

[45]   Jiang C., Chai H., Yan P. and Song F., The interaction of a screw dislocation with a circular inhomogeneity near the free surface. Archive of Applied Mechanics, 2014, 84: 343-353.

[46]   Zheng Q., Xu H., Song F., Zhang L., Zhou X., Shao Y. and Huang D., Spatial distribution of the human enamel fracture toughness with aging. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 26: 148-154.

[47]   Yan P., Jiang C.P. and Song F., Unified series solution for the anti-plane effective magnetoelectroelastic moduli of three-phase fiber composites. International Journal of Solids and Structures, 2013, 50: 176-185.

[48]   Shao Y., Du R., Wu X., Song F., Xu X. and Jiang C., Effect of porosity on the crack pattern and residual strength of ceramics after quenching. Journal of Materials Science, 2013, 48: 6431-6436.

[49]   Li J., Song F. and Jiang C., Direct numerical simulations on crack formation in ceramic materials under thermal shock by using a non-local fracture model. Journal of the European Ceramic Society, 2013, 33: 2677-2687.

[50]   Zhou Z., Song F.*, Shao Y., Meng S., Jiang C. and Li J., Characteristics of the surface heat transfer coefficient for Al2O3 ceramic in water quench. Journal of the European Ceramic Society, 2012, 32: 3029-3034.

[51]   Li J., Meng S., Tian X., Song F. and Jiang C., A non-local fracture model for composite laminates and numerical simulations by using the FFT method. Composites Part B-Engineering, 2012, 43: 961-971.

[52]   Jiang C.P., Wu X.F., Li J., Song F., Shao Y.F., Xu X.H. and Yan P., A study of the mechanism of formation and numerical simulations of crack patterns in ceramics subjected to thermal shock. Acta Materialia, 2012, 60: 4540-4550.

[53]   Jiang C.P., Chen F.L., Yan P. and Song F., Prediction of effective stagnant thermal conductivities of porous materials at high temperature by the generalized self-consistent method. Philosophical Magazine, 2012, 92: 2032-2047.

[54]   Hou H.L., Wu X.F., Yan P., Song F., Li J. and Jiang C.P., Crack patterns corresponding to the residual strength plateau of ceramics subjected to thermal shock. Acta Mechanica Sinica, 2012, 28: 670-674.

[55]   Zheng Q., Zhang L., Zhou X., Wang Q., Wang Y., Tang L., Song F. and Huang D., C-shaped root canal system in mandibular second molars in a Chinese population evaluated by cone-beam computed tomography. International Endodontic Journal, 2011, 44: 857-862.

[56]   Yan P., Jiang C.P. and Song F., An eigenfunction expansion-variational method for the anti-plane electroelastic behavior of three-phase fiber composites. Mechanics of Materials, 2011, 43: 586-597.

[57]   Li J., Pham T., Abdelmoula R., Song F. and Jiang C.P., A micromechanics-based strain gradient damage model for fracture prediction of brittle materials - Part II: Damage modeling and numerical simulations. International Journal of Solids and Structures, 2011, 48: 3346-3358.

[58]   Yan P., Jiang C.P. and Song F., A complex variable solution of two-dimensional heat conduction of composites reinforced with periodic arrays of cylindrically orthotropic fibers. Computational Materials Science, 2010, 50: 704-713.

[59]   Yan P., Jiang C., Song F. and Xu X., Estimation of transverse thermal conductivity of doubly-periodic fiber reinforced composites. Chinese Journal of Aeronautics, 2010, 23: 54-60.

[60]   Yan P., Chen F.L., Jiang C.P. and Song F., An eigenfunction expansion-variational method in prediction of the transverse thermal conductivity of fiber reinforced composites considering interfacial characteristics. Composites Science and Technology, 2010, 70: 1726-1732.

[61]   Yan P., Chen F.L., Jiang C.P. and Song F., U-transformation-finite element method in 3-dimensional analysis of orthotropic laminates. Composite Structures, 2010, 92: 3002-3010.

[62]   Song F., Meng S., Xu X. and Shao Y., Enhanced Thermal Shock Resistance of Ceramics through Biomimetically Inspired Nanofins. Physical Review Letters, 2010, 104: 125502.

[63]   Song F., Interactions between nearest-neighboring glycosaminoglycan molecules of articular cartilage. Molecular & Cellular Biomechanics, 2010, 7: 13-23.

[64]   Shao Y., Xu X., Meng S., Bai G., Jiang C. and Song F.*, Crack patterns in ceramic plates after quenching. Journal of the American Ceramic Society, 2010, 93: 3006-3008.

[65]   Liu Q.N., Meng S.H., Jiang C.P. and Song F., Critical biot’s number for determination of the sensitivity of spherical ceramics to thermal shock. Chinese Physics Letters, 2010, 27: 088104.

[66]   Liu Q.N., Song F.*, Meng S.H. and Jiang C.P., Universal Biot number determining stress duration and susceptibility of ceramic cylinders to quenching. Philosophical Magazine, 2010, 90: 1725-1732.

[67]   Jiang C.P., Chen F.L., Yan P. and Song F.*, A four-phase confocal elliptical cylinder model for predicting the effective thermal conductivity of coated fibre composites. Philosophical Magazine, 2010, 90: 3601-3615.

[68] Song F., Liu Q.N., Meng S.H. and Jiang C.P., A universal Biot number determining the susceptibility of ceramics to quenching. Europhysics Letters, 2009, 87: 54001.

[69]   Meng S., Liu G., Guo Y., Xu X. and Song F., Mechanisms of thermal shock failure for ultra-high temperature ceramic. Materials & Design, 2009, 30: 2108-2112.

[70]   Song F., Zhou J., Xu X., Xu Y. and Bai Y., Effect of a negative Poisson ratio in the tension of ceramics. Physical Review Letters, 2008, 100: 245502.

[71]   Xiao K., Bai K., Wang W. and Song F.*, Experimental study on the microstructure and nanomechanical properties of the wing membrane of dragonfly. Acta Mechanica Sinica, 2007, 23: 281-285.

[72]   Song F., Xiao K.W., Bai K. and Bai Y.L., Microstructure and nanomechanical properties of the wing membrane of dragonfly. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2007, 457: 254-260.

[73]   Li J., Mayau D. and Song F., A constitutive model for cavitation and cavity growth in rubber-like materials under arbitrary tri-axial loading. International Journal of Solids and Structures, 2007, 44: 6080-6100.

[74]   Bai K., Zhang T., Yang Z., Song F.*, Yang X. and Wang K., Anisotropic, gradient and metal-like mechanical behaviors of teeth and their implications on tooth functions. Chinese Science Bulletin, 2007, 52: 2310-2315.

[75]   Song F., Moyne C. and Bai Y.L., Electrostatic interactions between glycosaminoglycan molecules. Chinese Physics Letters, 2005, 22: 499-502.

[76]   Song F., Lee K.L., Soh A.K., Zhu F. and Bai Y.L., Experimental studies of the material properties of the forewing of cicada (Homóptera, Cicàdidae). Journal of Experimental Biology, 2004, 207: 3035-3042.

[77]   Song F., Soh A.K. and Bai Y.L., Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials, 2003, 24: 3623-3631.

[78]   Song F. and Bai Y.L., Effects of nanostructures on the fracture strength of the interfaces in nacre. Journal of Materials Research, 2003, 18: 1741-1744.

[79]   Song F., Zhang X.H. and Bai Y.L., Microstructure in a biointerface. Journal of Materials Science Letters, 2002, 21: 639-641.

[80]   Song F., Zhang X.H. and Bai Y.L., Microstructure and characteristics in the organic matrix layers of nacre. Journal of Materials Research, 2002, 17: 1567-1570.

[81]   Song F. and Bai Y.L., Nanostructure of nacre and its mechanical effects. International Journal of Nonlinear Sciences and Numerical Simulation, 2002, 3: 257-260.

[82]   Song F. and Bai Y.L., Mineral bridges of nacre and its effects. Acta Mechanica Sinica, 2001, 17: 251-257.

[83]   Song F. and Bai Y.L., Analysis of the strengthening and toughening of a biomaterial interface. Science in China Series A-Mathematics Physics Astronomy, 2001, 44: 1596-1601.

科研活动

(1)   国家自然科学基金委员会,面上项目, 11972041, 细胞-细胞粘附过程中的波动力调控机制, 2020-012023-12

(2)   中国科学院战略性先导科技专项课题(子课题), XDB22040102,大分子集团化及凝聚过程的介观力学机制, 2017-012021-12

(3)   国家自然科学基金委员会,面上项目,11472285, 生物膜间的熵力及其性质研究, 2015-012018-12

(4)   国家自然科学基金委员会,重点项目,11232013, 人眼晶状体调节和病变机制研究, 2013-012017-12

(5)   国家自然科学基金中法联合项目, 11061130550: 陶瓷材料热震断裂的实验、理论和数值研究,2011-0112013-12 

(6)   国家自然科学基项目,11072252:生物矿化材料的分级结构及其力学性能关联,2011-012013-12 

(7)   国家自然科学基金重大研究计划项目,90716004: 热冲击条件下超高温陶瓷ZrB2-SiC的强韧化机制研究,2008-012010-12

(8)   国家自然科学基金重点项目,10732050:天然生物材料的多尺度力学与仿生研究,2008-012011-12

(9)   国家自然科学基金优秀创新群体项目,(批准号:10721202):材料强度及灾变的跨尺度力学研究,2008012010-12

(10)  国家自然科学基金委员会,面上项目, 10672164, 昆虫翼材料的结构和力学性能研究, 2007-012009-12

(11)  中国科学院知识创新工程重要方向性项目,(批准号:KJCX2-YW-M04):材料与生物纳米性能高分辩测试技术与表征,2007-012010-12  

(12)  国家自然科学基金委员会,面上项目, 10372102, 生物层状陶瓷中的纳米结构及其强韧化效应研究, 2004-012006-12

(13)  国家自然科学基金委员会,面上项目, 10072067, 贝壳类生物材料微结构特征, 2001-012003-12

参与会议
(1)无   2023全国生物力学专业委员会会议   2023-11-10

指导学生

已指导学生

周俊兵  硕士研究生  080102-固体力学 

许艺   硕士研究生  080102-固体力学 

张泽平  硕士研究生  080102-固体力学 

周志亮  博士研究生  080102-固体力学

田晗菁  博士研究生  080102-固体力学

李伟   博士研究生  080102-固体力学 

刘清念  硕士研究生  080102-固体力学 

赵希宇  硕士研究生  080102-固体力学

韦佳辰  博士研究生  080102-固体力学

沈志强  硕士研究生  080102-固体力学

杜睿琪  博士研究生  080102-固体力学 

李龙   博士研究生  080102-固体力学

张婷   硕士研究生  080102-固体力学

 

现指导学生

刘清念  博士研究生  080102-固体力学

王小环  博士研究生  080102-固体力学

郑松杰  博士研究生  080102-固体力学

李俞桥  博士研究生  080102-固体力学

李庆显  硕士研究生  080102-固体力学